Abstract

Electric vehicles (EVs) are more environmentally friendly than gasoline vehicles (GVs). To reduce environmental pollution caused by ride-hailing gasoline vehicles (RGVs), they have been gradually replaced with ride-hailing electric vehicles (REVs). Like RGVs, REVs can allow passengers to share trips with others. However, REVs are plagued by charging needs in daily operations. This study develops a simulation–optimization framework for the dynamic electric ride-hailing sharing problem. This problem integrates a dynamic electric ride-hailing matching problem (with sharing) and a dynamic REV charging problem, both of which aim to match REVs to passengers willing to share their trips with others and schedule the charging events of REVs on temporal and spatial scales, respectively. The dynamic electric ride-hailing matching problem is divided into a set of electric ride-hailing matching subproblems by a rolling horizon approach without a look-ahead period, while the dynamic REV charging problem is divided into a set of REV charging subproblems by a rolling horizon approach with look-ahead periods. Each REV charging subproblem incorporates a novel charging strategy to determine the charging schedules of REVs and relieve the charging anxiety by considering the information of requests, REVs, and charging stations. Each REV charging subproblem is formulated as a mixed integer linear program (MILP), whereas each electric ride-hailing matching subproblem is formulated as a mixed integer nonlinear program (MINLP). The MINLP and MILP are solved by the artificial bee colony algorithm and CPLEX, respectively. The proposed simulation–optimization framework includes a simulation model which is used to mimic the operations of REVs and update and track the state of passengers and the charging processes at charging stations over time using the outputs of each MILP and MINLP. The results show that the proposed charging strategy outperforms the benchmarks with a shorter waiting time for charging and a higher matching percentage in the dynamic ride-hailing matching problem. The robustness of the proposed charging strategy is tested under different scenarios with changing the initial state of charge (SOC), the number of REVs, the number of charging piles at each charging station, the time to fully charge, and the distribution of charging piles. The results show that REV drivers can charge their vehicles more flexibly without waiting too long and then pick up more passengers under all test scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.