Abstract
Current supervised intelligent fault diagnosis relies on abundant labeled data. However, collecting and labeling data are typically both expensive and time-consuming. Fault diagnosis with unlabeled data remains a significant challenge. To address this issue, a simulation data-driven semi-supervised framework based on multi-kernel K-nearest neighbor (MK-KNN) and edge self-supervised graph attention network (ESSGAT) is proposed. The novel MK-KNN establishes the neighborhood relationships between simulation data and real data. The developed multi-kernel function mitigates the risks of overfitting and underfitting, thereby enhancing the robustness of the simulation-real graphs. The designed ESSGAT employs two forms of self-supervised attention to predict the presence of edges, increasing the weights of crucial neighboring nodes in the MK-KNN graph. The performance of the proposed method is evaluated using a public bearing dataset and a self-constructed dataset of high-speed train axle box bearings. The results show that the proposed method achieves better diagnostic performance compared with other state-of-the-art graph construction methods and graph convolutional networks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have