Abstract

Typical modeling techniques for information system analysis and design treat key system requirement parameters as static. In addition, system dynamics reflected in time-path behavior, such as queues and bottlenecks, are not captured in traditional information system process models. A more realistic approach to information system analysis and design, which would allow decision makers to make more informed choices on information system design alternatives, might be to include the dynamic aspects of a system and to model those components for which uncertainty exists in a probabilistic fashion. In this paper we propose a paradigm for integrating conventional process modeling in systems analysis and design with simulation modeling and analysis techniques. Simulation analysis enhances the modeling process by allowing systems analysts to experiment with and analyze alternative system designs. In addition, by including the distributional characteristics and, thus, the variability of key system parameters in the model, sensitivity analysis may be performed and the robustness of alternative system designs can be explored. Our proposed methodology for information system analysis and design is illustrated with an example of an order entry information system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call