Abstract

Brownian dynamics of colloidal particles on complex curved surfaces has found important applications in diverse physical, chemical, and biological processes. However, most Brownian dynamics simulation algorithms focus on relatively simple curved surfaces that can be analytically parameterized. In this work, we develop an algorithm to enable Brownian dynamics simulation on extremely complex curved surfaces. We approximate complex curved surfaces with triangle mesh surfaces and employ a novel scheme to perform particle simulation on these triangle mesh surfaces. Our algorithm computes forces and velocities of particles in global coordinates but updates their positions in local coordinates, which combines the strengths from both global and local simulation schemes. We benchmark the proposed algorithm with theory and then simulate Brownian dynamics of both single and multiple particles on torus and knot surfaces. The results show that our method captures well diffusion, transport, and crystallization of colloidal particles on complex surfaces with nontrivial topology. This study offers an efficient strategy for elucidating the impact of curvature, geometry, and topology on particle dynamics and microstructure formation in complex environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.