Abstract
Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al., Biophysical Journal, 1999, Vol. 76, pp. 17-27) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (I. V. Ouporov et al., Journal of Molecular Recognition, 2001, Vol. 14, pp. 29-41) involved in binding F-actin, and suggested that the quaternary structure of the enzymes may be important. Herein, BD simulations of F-actin binding by enzyme dimers or peptides matching particular sequences of the enzyme and the intact enzyme triose phosphate isomerase (TIM) are compared. BD confirms the experimental observation that TIM has little affinity for F-actin. For aldolase, the critical residues identified by BD are found in surface grooves, formed by subunits A/D and B/C, where they face like residues of the neighboring subunit enhancing their electrostatic potentials. BD simulations between F-actin and aldolase A/D dimers give results similar to the native tetramer. Aldolase A/B dimers form complexes involving residues that are buried in the native structure and are energetically weaker; these results support the importance of quaternary structure for aldolase. GAPDH, however, placed the critical residues on the corners of the tetramer so there is no enhancement of the electrostatic potential between the subunits. Simulations using GAPDH dimers composed of either S/H or G/H subunits show reduced binding energetics compared to the tetramer, but for both dimers, the sets of residues involved in binding are similar to those found for the native tetramer. BD simulations using either aldolase or GAPDH peptides that bind F-actin experimentally show complex formation. The GAPDH peptide bound to the same F-actin domain as did the intact tetramer; however, unlike the tetramer, the aldolase peptide lacked specificity for binding a single F-actin domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.