Abstract

First-order staggered-grid finite-difference methods are widely used to synthesize seismograms theoretically. They are also the basis of least-squares reverse time migration and full waveform inversion. It is important to accelerate the wave-equation simulation while still preserving high accuracy. Usually the same staggered-grid finite difference operator is used for all of the first-order spatial derivatives in the first-order acoustic wave-equation. In this paper, we propose a simplified staggered-grid finite-difference scheme which uses different finite-difference operators for different first-order spatial derivatives in the first-order acoustic wave-equation. Because the new dispersion relation is linear, the staggered-grid finite-difference coefficients are determined in the time-space domain with the previously proposed linear method. We demonstrate by dispersion analysis and numerical simulation the efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.