Abstract

Staggered grid finite difference (FD) methods are widely used to synthesise seismograms theoretically, and are also the basis of reverse time migration and full waveform inversion. Grid dispersion is one of the key problems for FD methods. It is desirable to have a FD scheme which can accelerate wave equation simulation while still preserving high accuracy. In this paper, we propose a totally new staggered grid FD scheme which uses different staggered grid FD operators for different first order spatial derivatives in the first order acoustic wave equation. We determine the FD coefficient in the space domain with the least-squares method. The dispersion analysis and numerical simulation demonstrated the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.