Abstract
Apolipoprotein E (apoE), a polymorphic plasma protein, plays a pivotal role in lipid transportation. The human apoE gene possesses three major alleles (ε2, ε3, and ε4), which differ by single amino acid (cysteine to arginine) substitutions. The ε4 allele represents the primary genetic risk factor for Alzheimer's disease (AD), whereas the ε2 allele protects against the disease. Knowledge of a patient's apoE genotype has high diagnostic value. A recent study has introduced an LC-MRM-MS-based proteomic approach for apoE isoform genotyping using stable isotope-labeled peptide internal standards (SIS). Here, our goal was to develop a simplified LC-MRM-MS assay for identifying apoE genotypes in plasma samples, eliminating the need for the use of SIS peptides. To determine the apoE genotypes, we monitored the chromatographic peak area ratios of isoform-specific peptides relative to a peptide that is common to all apoE isoforms. The assay results correlated well with the standard TaqMan allelic discrimination assay, and we observed a concordance between the two methods for all but three out of 172 samples. DNA sequencing of these three samples has confirmed that the results of the LC-MRM-MS method were correct. Thus, our simplified UPLC-MRM-MS assay is a feasible and reliable method for identifying apoE genotypes without using SIS internal standard peptides. The approach can be seamlessly incorporated into existing quantitative proteomics assays and kits, providing additional valuable apoE genotype information. The principle of using signal ratios of the protein isoform-specific peptides to the peptide common for all of the protein isoforms has the potential to be used for protein isoform determination in general.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have