Abstract
A reduced-order model (ROM) is proposed for efficient drag prediction on a streamlined body with surface imperfections that emulate leading-edge roughness or erosion-induced damage. Surface imperfections are idealised as forward-facing step(s) for which the chordwise position, spanwise length, and distribution of steps are varied. It is hypothesised that superposed a bilinear dependencies on the chordwise location and spanwise length of individual steps comprising the damage provide for reasonable ROM predictions of the corresponding change in total drag on the streamlined body. Direct numerical simulations are applied to test the ROM hypotheses and to study interactions between the three-dimensional steps and the separated near-wall turbulent flow fields, justifying the underlying terms and form of the ROM. Insights into the flow physics influencing both form and friction contributions to total drag are revealed, and satisfactory model performance is demonstrated for complex damage idealisations that emulate fracture of laminated wind turbine blades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.