Abstract

The performance of model-based state-of-charge (SOC) estimation method relies on an accurate battery model. Nonlinear models are thus proposed to accurately describe the external characteristics of the lithium-ion battery. The nonlinear estimation algorithms and online parameter identification methods are needed to guarantee the accuracy of the model-based SOC estimation with nonlinear battery models. A new approach forming a dynamic linear battery model is proposed in this paper, which enables the application of the linear Kalman filter for SOC estimation and also avoids the usage of online parameter identification methods. With a moving window technology, partial least squares regression is able to establish a series of piecewise linear battery models automatically. One element state-space equation is then obtained to estimate the SOC from the linear Kalman filter. The experiments on a LiFePO4 battery prove the effectiveness of the proposed method compared with the extended Kalman filter with two resistance and capacitance equivalent circuit model and the adaptive unscented Kalman filter with least squares support vector machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.