Abstract

A direct analysis method for problems in repeated elastic-plastic rolling/sliding contact is presented. The method is shown to be an efficient technique for the determination of the steady-state solution under proportional or nonproportional cyclic loading and can provide such results as residual stress, residual strain, and cyclic strain range. Furthermore, the method is valid for both elastic and plastic shakedown. A two-dimensional rolling/sliding contact problem is considered with emphasis on the calculation of cyclic plastic strains. Several numerical techniques are employed to simplify and reduce the computational effort. These techniques consist of an operator split, the modified incremental projection method, middle-loading state, and decomposition into residual steady-state and cyclic parts. The resulting scheme is highly efficient and is ideally suited for parameter studies. To demonstrate the practical application of the approach, a two-dimensional contact problem, assuming a case-hardened material, is solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.