Abstract

Rail-wheel contact problems have been analyzed by the use of the three-dimensional finite element models. Based on these models, the paper presents a study regarding the applicability of the Hertz contact to rail-wheel contact problems. Beside a standard rail, the study also considers a crane rail and a switching component. The bodies of the contact problem are the standard rail UIC60 and the standard wheel UICORE. The maximum contact pressure which the material can support in the elastic range in steady state conditions is known as the shakedown limit. With an operating contact pressure below the shakedown limit the rail would be expected to remain elastic a long period of its lifecycle. However, examination of rail cross-sections shows severe plastic deformation in a sub-surface layer of a few tens of microns thickness; the contact patch size is in tens of millimeters. Three-dimensional elastic-plastic rolling contact stress analysis was conducted incorporating elastic and plastic shakedown concepts. The Hertzian distribution was assumed for the normal surface contact load over a circular contact area. The tangential forces in both the rolling and lateral directions were considered and were assumed to be proportional to the Hertzian pressure. The elastic and plastic shakedown limits obtained for the three-dimensional contact problem revealed the role of both longitudinal and lateral shear traction on the shakedown results. An advanced cyclic plasticity model was implemented into a finite element code via the material subroutine. Finite element simulations were conducted in order to study the influences of the tangential surface forces in the two shear directions on residual stresses and residual strains. The Hertz theory is restricted to frictionless surfaces and perfectly elastic solids, but it is the best method for determining deformations and stress from pitch of contact. Form change due to wear and plastic deformation of a rail can reduce the service life of a track. The purpose of this investigation was to study the development of these damage mechanisms on new and three years old rails in a commuter track over a period of two years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.