Abstract

A quick computation approach based on cellular automata is developed and implemented to describe the reduction of iron ore pellets by a mixture of reducing agents featured by different H2/CO ratios. The evolution of oxygen concentration inside the pellet is followed from the beginning to the end of contact between reducing agent and pellet. The variation of thermal state of pellets and gas mixture is computed based on their initial temperature, considering the heat involved and the convective heat exchange between pellet and gas mixture. The use of cellular automata and finite‐difference method to solve the diffusion equation point out the absence of any diffusion coefficient value, allowing to make the model fit the experimental trial, because the problem is that it is not ruled just by diffusion but also by the concentration variation of reducing agent inside the pellet due to porosity increasing during reduction. The updating of the reducing agents concentration implies a sharp decrease of oxygen concentration that the cellular automata model considers. The developed model is able to provide the in‐line control of reduction process and could be used to adjust the chemical concentration and temperature of injected reducing agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.