Abstract

We consider continuous linear programs over a continuous finite time horizon $T$, with a constant coefficient matrix, linear right hand side functions and linear cost coefficient functions, where we search for optimal solutions in the space of measures or of functions of bounded variation. These models generalize the separated continuous linear programming models and their various duals, as formulated in the past by Anderson, by Pullan, and by Weiss. In previous papers we have shown that these problems possess optimal strongly dual solutions. We also have presented a detailed description of optimal solutions and have defined a combinatorial analogue to basic solutions of standard LP. In this paper we present an algorithm which solves this class of problems in a finite bounded number of steps, using an analogue of the simplex method, in the space of measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.