Abstract

We consider continuous linear programs over a continuous finite time horizon $T$, with linear cost coefficient functions, linear right-hand side functions, and a constant coefficient matrix, as well as their symmetric dual. We search for optimal solutions in the space of measures or of functions of bounded variation. These models generalize the separated continuous linear programming models and their various duals, as formulated in the past by Anderson, by Pullan, and by Weiss. In a recent paper, we have shown that under a Slater-type condition, these problems possess optimal strongly dual solutions. In this paper, we give a detailed description of optimal solutions and define a combinatorial analogue to basic solutions of standard LP. We also show that feasibility implies existence of strongly dual optimal solutions without requiring the Slater condition. We present several examples to illustrate the richness and complexity of these solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.