Abstract

This work considers the numerical approximation of the shallow-water equations. In this context, one faces three important issues related to the well-balanced, positivity and entropy-preserving properties, as well as the ability to consider vacuum states. We propose a Godunov-type method based on the design of a three-wave Approximate Riemann Solver (ARS) which satisfies the first two properties and a weak form of the last one together. Regarding the entropy, the solver satisfies a discrete non-conservative entropy inequality. From a numerical point of view, we also investigate the validity of a conservative entropy inequality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.