Abstract

Multilevel programming is characterized as mathematical programming to solve decentralized planning problems. The models partition control over decision variables among ordered levels within a hierarchical planning structure of which the linear bilevel form is a special case of a multilevel programming problem. In a system with such a hierarchical structure, the high-level decision making situations generally require inclusion of zero-one variables representing ‘yes-no’ decisions. We provide a mixed-integer linear bilevel programming formulation in which zero-one decision variables are controlled by a high-level decision maker and real-value decision variables are controlled by a low-level decision maker. An algorithm based on the short term memory component of Tabu Search, called Simple Tabu Search, is developed to solve the problem, and two supplementary procedures are proposed that provide variations of the algorithm. Computational results disclose that our approach is effective in terms of both solution quality and efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call