Abstract
The paper concerns the detection of fall events based on human silhouette shape variations. The detection of fall events is addressed from the statistical point of view as an anomaly detection problem. Specifically, the paper investigates the multivariate exponentially weighted moving average (MEWMA) control chart to detect fall events. Towards this end, a set of ratios for five partial occupancy areas of the human body for each frame are collected and used as the input data to MEWMA chart. The MEWMA fall detection scheme has been successfully applied to two publicly available fall detection databases, the UR fall detection dataset (URFD) and the fall detection dataset (FDD). The monitoring strategy developed was able to provide early alert mechanisms in the event of fall situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.