Abstract

Understanding and predicting species extinctions and coextinctions is a major goal of ecological research in the face of a biodiversity crisis. Typically, models based on network topology are used to simulate coextinctions in mutualistic networks. However, such topological models neglect two key biological features of species interactions: variation in the intrinsic dependence of species on the mutualism, and variation in the relative importance of each interacting partner. By incorporating both types of variation, we developed a stochastic coextinction model capable of simulating extinction cascades far more complex than those observed in previous topological models. Using a set of empirical mutualistic networks, we show that the traditional topological model may either underestimate or overestimate the number and likelihood of coextinctions, depending on the intrinsic dependence of species on the mutualism. More importantly, contrary to topological models, our stochastic model predicts extinction cascades to be more likely in highly connected mutualistic communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.