Abstract

Understanding the response of ecological networks to perturbations and disruptive events is needed to anticipate the biodiversity loss and extinction cascades. Here, we study how network plasticity reshapes the topology of mutualistic networks in response to species loss. We analyze more than one hundred empirical mutualistic networks and considered random and targeted removal as mechanisms of species extinction. Network plasticity is modeled as either random rewiring, as the most parsimonious approach, or resource affinity-driven rewiring, as a proxy for encoding the phylogenetic similarity and functional redundancy among species. This redundancy should be positively correlated with the robustness of an ecosystem, as functions can be taken by other species once one of them is extinct. We show that effective modularity, i.e. the ability of an ecosystem to adapt or restructure, increases with increasing numbers of extinctions, and with decreasing the replacement probability. Importantly, modularity is mostly affected by the extinction rather than by rewiring mechanisms. These changes in community structure are reflected in the robustness and stability due to their positive correlation with modularity. Resource affinity-driven rewiring offers an increase of modularity, robustness, and stability which could be an evolutionary favored mechanism to prevent a cascade of co-extinctions.

Highlights

  • Understanding the response of ecological networks to perturbations and disruptive events is needed to anticipate the biodiversity loss and extinction cascades

  • We considered again two adaptation scenarios, in both cases the consumer is maintained while the resource is rewired: (i) random rewiring, where the extinct resource is replaced by an existing resource at random; and (ii) resource affinity-driven rewiring, where the extinct resource is replaced by another resource selected proportionally to the number of common consumers shared with it

  • For each bipartite network analyzed, we reported the results of 100 realizations of the dynamics for each scenario

Read more

Summary

Introduction

Understanding the response of ecological networks to perturbations and disruptive events is needed to anticipate the biodiversity loss and extinction cascades. Network plasticity is modeled as either random rewiring, as the most parsimonious approach, or resource affinity-driven rewiring, as a proxy for encoding the phylogenetic similarity and functional redundancy among species. This redundancy should be positively correlated with the robustness of an ecosystem, as functions can be taken by other species once one of them is extinct. Network adaptation reflects the ability of a system to respond to external (e.g., environmental) perturbations in terms of establishing dynamic interactions between the remaining elements. We investigated the effects on topological robustness, measured as the degree of connectivity within the network; network modularity, seen as the compartmentalized nature of the networks, and dynamical stability, measured through the change in the largest eigenvalue of the adjacency matrix

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.