Abstract

A very simple, ultra-sensitive and fairly selective new spectrophotometric method has been developed for the rapid determination of lead(II) at ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) in presence of aqueous micellar solutions. The proposed method enabled the determination of lead down to µg l−1in human blood and urine in aqueous media without resource of any “clean-up” step. The most remarkable point of this method is that the presence of micellar system avoids the previous steps of solvent extraction and reduces the cost, toxicity while enhancing the sensitivity, selectivity and the molar absorptivity. The complex formation of lead in blood with dithizone was completed within a minute at room temperature and the absorbance remains stable for 24 h. The average molar absorption coefficient and Sandell's sensitivity were found to be 3.99×105l mol−1 cm−1and 30 ng cm−2of Pb, respectively. Linear calibration graphs were obtained for 0.06–60 mg l−1of PbII; the stoichiometric composition of the chelate is 1:2 (Pb:dithizone). The interference from over 60 cations, anions and complexing agents has been studied at 1 mg l−1of PbII. The method was successfully used in the determination of lead in several biological samples (human blood and urine and bovine liver), solution containing both lead(II) and lead(IV) and complex synthetic mixtures. The results of biological analyses by the spectrophotometric method were in excellent agreement with those obtained by AAS. The results of lead concentration in biological samples were varied with age, sex and place which have been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.