Abstract

This month’s column is Part 2 of a contribution from my daughter Glenna, who recently completed her PhD studies in Environmental Science from the University of Copenhagen in Denmark. Her article explores the current landscape of global critical raw materials (CRM) trends in research and the applications of atomic spectroscopy (AS), including inductively coupled plasma–mass spectrometry (ICP-MS), inductively coupled plasma–optical emission spectrometry (ICP-OES), and X-ray analytical techniques in their identification of diverse industrial and environmental media, which have been essential in method validation and quantification of CRMs in complex matrices presenting high risks of interference. Some important examples to be presented include rare earth elements (REEs) in water leaching purification (WLP) residues that co-occur with radioactive materials; REEs and other metals in acid mine drainage (AMD) environments; REEs in coal combustion (fly ash) residues; arsenic (As) from groundwater treatment sediment; and platinum-group elements (PGEs) from sewage sludge. The article also classifies the different techniques in use at each stage of the CRM recovery train, investigates present challenges to each analytical method, and discusses the problem-solving tools used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.