Abstract

The degradation of natural organic matter (NOM) in homogeneous and heterogeneous advanced oxidation processes (AOP) was simulated using a simple underlying physical model. By treating the NOM molecules as linear chains and allowing them to be cleaved at any point selected at random, it is possible to reproduce well the results for homogeneous AOP experiments. To simulate a heterogeneous process, a bias was introduced (in the form of different weights for different chain lengths) according to literature data on the adsorption of NOM onto TiO 2 nanoparticle agglomerates. After introduction of the (adsorption) bias, the simulation closely followed the degradation sequence observed in heterogeneous photocatalysis with TiO 2 suspensions. Thus, the experimental results for homogeneous AOP may well be explained by a random breakdown of the NOM molecules; that is, we find no evidence for a selective degradation of the large molecular size material. However, a selectivity is present in the heterogeneous system due to the differential adsorption of NOM onto the reactive surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.