Abstract

Power electronic devices and variable speed drives solve a power quality issue. To increase the power quality, the distribution side must be compensated by concurrently infusing actual and reactive power. A cost-effective method of preventing voltage sag and swell in power electronic loads is the use of a dynamic voltage restorer. To enhance the power quality for end users, a DC-link component will be combined with the DVR. Ratings for DC-Link elements and inverters are more challenging when constructing a DVR. To simplify things, the Distributed Energy Source (DES) is combined with the DC-Link and the Inverter. The PV-integrated DVR is under the supervision of the Interval type-2 Fuzzy Logic Controller using Synchronous Reference Frame Theory. Reactive power is injected and absorbed under defective situations using a variety of injection techniques with various controllers. The suggested controller enhances power quality and provides exact results under different fault scenarios. Matlab is used to compare the proposed IT2-FLC to a type-1 fuzzy-adjusted PI controller and a traditional mathematical PI controller. The results of the simulations showed that the suggested methodology provided a better outcome on the Distribution side. To validate the simulation results, a scaled-down rating prototype model is created.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call