Abstract

A simple molecular mechanics force field for graphene (PPBE-G) was created by force matching the density functional theory Perdew-Burke-Ernzerhof forces using the adaptive force matching method recently developed in our group. The PPBE-G potential was found to provide significantly more accurate forces than other existing force fields. Several properties of graphene, such as Young's modulus, bending rigidity, and thermal conductivity, have been studied with our potential. The calculated properties are in good agreement with corresponding density functional theory and experimental values. The thermal conductivity calculated with reverse non-equilibrium molecular dynamics depends sensitively on graphene size thus requiring the simulation of large sheets for convergence. Since the PPBE-G potential only contains simple additive energy expressions, it is very computationally efficient and is capable of modeling large graphene sheets in the μm length scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.