Abstract

The recently introduced adaptive force matching (AFM) method is used to develop a significantly improved pair-wise nonpolarizable potential for water. A rigid version of the potential is also presented to enable larger time steps for biological simulations. In this work, it is demonstrated that the AFM method can be used to systematically assess the importance of each functional term during the construction of a force field. For a water potential, it is established that a single off-atom charge center (M) in the plane of water outperforms two out-of-plane charge sites for reproducing intermolecular forces. The four-site pair-wise nonpolarizable force field developed in this work rivals some of the most sophisticated polarizable models in terms of reproducing accurate ab initio forces. The force fields are parameterized to perform best in the temperature range from 0 to 40°C. Equilibrium and dynamical properties calculated with the flexible and rigid force fields are in good agreement with experimental results. For the flexible model, the agreement improves when path integral simulation is performed. These force fields provide high-quality results at a very low computational cost and are thus well suited to atomistic scale biological simulations. The AFM method provides a mechanism for selecting important terms in force field expressions and is a very promising tool for producing accurate force fields in condensed phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call