Abstract

AbstractCytoplasmic male sterility (CMS) by the cms‐bo cytoplasm and its restoration by the nuclear restorer gene, Rf‐1, are used for seed production of japonica hybrid rice varieties. To produce pure hybrid seeds, a prerequisite is to properly manage the seed purity of parental lines, especially CMS lines. In this study, three dominant polymerase chain reaction (PCR)‐based markers (M1, M2 and M3) were developed to detect mutual contamination in seed batches of CMS lines, maintainer lines, restorer lines and hybrids. M1 detected the mitochondrial sequence that was present in the cytoplasm of common japonica varieties and absent in the cms‐bo cytoplasm. M2 and M3 detected the chromosomal sequence related to the Rf‐1 allele in restorer lines and the rf‐1 allele in common japonica varieties, respectively. By the strategic use of these markers, japonica hybrids and their parental lines could be efficiently distinguished from each other. Furthermore, sensitivity tests for the three markers with a series of crude DNA samples prepared from polished grains demonstrated that these markers could detect one contaminating grain among 500 or 1000 grains. Therefore, the bulk PCR analyses with the markers developed here probably make it possible to control the seed purity of japonica hybrids properly by selecting appropriate seed batches of their parental lines quickly and efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.