Abstract

Abstract The need for compactness and efficiency of processing devices has kept increasing rapidly over the past few years. This need for compactness has driven the dice to be stacked one above the other. But with this come the difficulty of heat dissipation and its characterization because there are multiple heat sources and a single effective heat-conductive path. Hence, it becomes important to know the distribution and characterization of heat and temperature to provide effective cooling systems. In this article, we discuss the temperature distribution of various power configurations on stacked dice with five dice, when the dice are in staggered arrangement. The simulations have been carried out for both free convection and forced convection conditions using the ANSYS commercial software. The linear Superposition principle (LSP) is demonstrated on these configurations and validated with the results obtained from ANSYS simulation. LSP can be applied for the quick estimation of die temperatures with negligible error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call