Abstract

A general technique is presented for calculating the capacity of a lake for development based on quantifiable relationships between nutrient inputs and water quality parameters reflecting lake trophic status. Use of the technique for southern Ontario lakes is described. From the land use and geological formations prevalent in a lake’s drainage basin, the phosphorus exported to the lake in runoff water can be calculated, which, when combined with the input directly to the lake’s surface in precipitation and dry fallout, gives a measure of the natural total phosphorus load. From the population around the lake, the maximum artificial phosphorus load to the lake can be calculated and, if necessary, modified according to sewage disposal facilities used. The sum of the natural and artificial loads can be combined with a measure of the lake’s morphometry expressed as the mean depth, the lake’s water budget expressed as the lake’s flushing rate, and the phosphorus retention coefficient of the lake, a parameter dependent on both the lake’s morphometry and water budget, to predict springtime total phosphorus concentration in the lake. Long-term average runoff per unit of land area, precipitation, and lake evaporation data for Ontario provide a means of calculating the necessary water budget parameters without expensive and time-consuming field measurements. The predicted spring total phosphorus concentration can be used to predict the average chlorophyll a concentration in the lake in the summer, and this, in turn, can be used to estimate the Secchi disc transparency. Thus, the effects of an increase in development on a lake’s water quality can be predicted. Conversely, by setting limits for the "permissible" summer average chlorophyll a concentration or Secchi disc transparency, the "permissible" total phosphorus concentration at spring overturn can be calculated. This can be translated into "permissible" artificial load, which can then be expressed as total allowable development. This figure can be compared to the current quantity of development and recommendations made concerning the desirability of further development on the lake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.