Abstract
Right- and interval-censored data are common special cases of coarsened data (Heitjan and Rubin, 1991, Annals of Statistics19, 2244-2253). As with missing data, standard statistical methods that ignore the random nature of the coarsening mechanism may lead to incorrect inferences. We extend a simple sensitivity analysis tool, the index of local sensitivity to nonignorability (Troxel, Ma, and Heitjan, 2004, Statistica Sinica14, 1221-1237), to the evaluation of nonignorability of the coarsening process in the general coarse-data model. By converting this index into a simple graphical display one can easily assess the sensitivity of key inferences to nonignorable coarsening. We illustrate the validity of the method with a simulated example, and apply it to right-censored data from an observational study of cardiac transplantation and to interval-censored data on time to detectable viral load from a clinical trial in HIV disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have