Abstract

This paper studies the robust tracking control problem for a class of uncertain nonlinear dynamical systems subject to unknown disturbances. A robust trajectory tracking control law is designed via a simple learning-based control strategy. In the developed design, the cost function based on the desired closed-loop error dynamics is minimized by means of gradient descent technique. A stability proof for the closed-loop nonlinear system is provided based on the pseudo-linear system theory. The learning capability of the developed robust trajectory tracking control law allows the system to mitigate the adverse effects of the uncertainties and disturbances. The numerical simulation results for a planar PPR robot are included to illustrate the effectiveness of the developed control law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call