Abstract
A model of the desorption and adsorption of a polymer layer at a planar surface indicates a transition from exponential kinetics at high temperatures to nonexponential kinetics (stretched exponential with index one-half) at lower temperatures where these processes are diffusion-limited. Measurements of polystyrene desorption through polyisoprene overlayers show this predicted transition. Corroborative results are obtained for polystyrene desorption through polymethylmethacrylate overlayers. This identification of two distinct kinetic regimes suggests a unifying perspective from which to analyze polymer and biopolymer mobility at surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.