Abstract

The close-coupled selective catalytic reduction (cc-SCR) catalyst is an effective technology to reduce tailpipe NOx emission during cold start. This paper investigated the optimal ammonia storage under steady and transient state in the cc-SCR. The study showed that a trade-off between NOx conversion efficiency and ammonia slip is observed on the pareto solutions under steady state, and the optimal ammonia storage is calculated with ammonia slip less than 10 µL/L based on the China Ⅵ emission legislation. The rapid temperature increase will lead to severe ammonia slip in the transient test cycle. A simplified 0-D calculation method on ammonia slip under transient state is proposed based on kinetic model of ammonia adsorption and desorption. In addition, the effect of ammonia storage, catalyst temperature and temperature increasing rate on ammonia slip are analyzed. The optimal ammonia storage is calculated with maximum ammonia slip less than 100 µL/L according to the oxidation efficiency of ammonia slip catalyst (ASC) downstream cc-SCR. It was found that the optimal ammonia storage under transient state is much lower than that under steady state in cc-SCR at lower temperature, and a phase diagram is established to analyze the influence of temperature and temperature increasing rate on optimal ammonia storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.