Abstract

Multiphase (more than three phases) drives possess several advantages over conventional three-phase drives, such as reducing the amplitude and increasing the frequency of torque pulsations, reducing the rotor harmonic currents, reducing the current per phase without increasing the voltage per phase, lowering the dc-link current harmonics, and higher reliability. By increasing the number of phases it is also possible to increase the power /torque per rms ampere for the same volume machine. This paper, therefore, presents a simple and straightforward approach to develop an indirect field-oriented control (FOC) scheme for a six-phase induction machine with an arbitrary displacement between the two three-phase winding sets. The two current-controlled pulsewidth-modulation three-phase voltage-source inverter independently feeds the two sets of three-phase stator windings. The scheme is based on simple two-axis (d-q) model of the six-phase induction machine, and can be easily extended to any number of phases, which are multiples of three. The unbalanced current sharing between the two three-phase stator-winding sets observed in earlier schemes is automatically eliminated, and the practical implementation of the scheme is simple. Necessary experimental and simulation results are presented to show the effectiveness of the proposed indirect FOC scheme. In the study, online analysis has been performed using C/sup ++/, while MATLAB /SIMULINK has been used to perform the offline analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.