Abstract

The fracture behavior of a novel porous metal fiber sintered sheet (PMFSS) was predicted using a semi-empirical method combining the knowledge of its morphological characteristics and micro-mechanical responses. The morphological characteristics were systematically summarized based on the analysis of the topologically identical skeleton representation extracted from the X-ray tomography images. The analytical model firstly proposed by Tan et al. [1] was further modified according to the experimental observations from both tensile tests of single fibers and sintered fiber sheets, which built the coupling of single fiber segment and fiber network in terms of fracture energy using a simple prediction method. The efficacy of the prediction model was verified by comparing the predicted results to the experimental measurements. The prediction error that arose at high porosity was analyzed through fiber orientation distribution. Moreover, the tensile fracture process evolving from single fiber segments at micro-scale to the global mechanical performance was investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.