Abstract

The problem of air pollution is a frequently recurring situation and its management has social and economic considerable effects. Given the interaction of the numerous factors involved in the raising of the atmospheric pollution rates, it should be considered that the relation between the intensity of emission produced by the polluting source and the resulting pollution is not immediate. The aim of this study was to realise and to compare two support decision system (neural networks and multivariate regression model) that, correlating the air quality data with the meteorological information, are able to predict the critical pollution events. The development of a back-propagation neural network is presented to predict the daily PM10 concentration 1, 2 and 3 days early. The measurements obtained by the territorial monitoring stations are one of the primary data sources; the forecasting of the major weather parameters available on the website and the forecasting of the Saharan dust obtained by the “Centro Nacional de Supercomputacion” website, satellite images and back trajectories analysis are used for the weather input data. The results obtained with the neural network were compared with those obtained by a multivariate linear regression model for 1 and 2 days forecasting. The relative root mean square error for both methods shows that the artificial neural networks (ANN) gives more accurate results than the multivariate linear regression model mostly for 1 day forecasting; moreover, the regression model used, in spite of ANN, failed when it had to fit spiked high values of PM10 concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call