Abstract
A simple and efficient empirical likelihood ratio (ELR) test for normality based on moment constraints of the half-normal distribution was developed. The proposed test can also be easily modified to test for departures from half-normality and is relatively simple to implement in various statistical packages with no ordering of observations required. Using Monte Carlo simulations, our test proved to be superior to other well-known existing goodness-of-fit (GoF) tests considered under symmetric alternative distributions for small to moderate sample sizes. A real data example revealed the robustness and applicability of the proposed test as well as its superiority in power over other common existing tests studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have