Abstract
The present paper provides a new method for numerical solution of nonlinear boundary value problems. This method is a combination of group preserving scheme (GPS) and a shooting--like technique which takes advantage of two powerful methods for solving nonlinear boundary value problems. This method is very effective to search unknown initial conditions. To demonstrate the computational efficiency, the mentioned method is implemented for some nonlinear exactly solvable differential equations including strongly nonlinear Bratu equation, nonlinear reaction--diffusion equation and one singular nonlinear boundary value problem. It is also applied successfully on two nonlinear three--point boundary value problems and a third--order nonlinear boundary value problem which the exact solutions of this problems are unknown. The examples show the power of method to search for unique solution or multiple solutions of nonlinear boundary value problems with high computational speed and high accuracy. In the test problem 5 a new branch of solutions is found which shows the power of the method to search for multiple solutions and indicates that the method is successful in cases where purely analytic methods are not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Analysis and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.