Abstract
In real-world scenarios, detecting out-of-distribution (OOD) action is important when deploying a deep learning-based human action recognition (HAR) model. However, HAR models are easily biased to static information in the video (e.g., background), which can lead to performance degradation of OOD detection methods. In this paper, we propose a simple debiasing framework for out-of-distribution detection in human action recognition. Specifically, our framework eliminates patches with static bias in video using attention maps extracted from the video vision transformer model. Experimental results show that our framework achieves consistent performance improvement on multiple OOD action detection methods and challenging benchmarks. Furthermore, we introduce two new OOD action detection tasks, Kinetics-400 vs. Kinetics-600 exclusive and Kinetics-400 vs. Kinetics-700 exclusive, to validate our method in a setting close to the real-world scenario. With extensive experiments, we demonstrate the effectiveness of our attention-based masking, and in-depth analysis validates the effect of static bias on OOD action detection. The source code and supplementary materials are available at: https://github.com/Simcs/attention-masking.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have