Abstract

A generalized Robertson–Walker spacetime is the warped product with base an open interval of the real line endowed with the opposite of its metric and base any Riemannian manifold. The family of generalized Robertson–Walker spacetimes widely extends the one of classical Robertson–Walker spacetimes. Further, generalized Robertson–Walker spacetimes appear as a privileged class of inhomogeneous spacetimes admitting an isotropic radiation.In this section we prove a very simple characterization of generalized Robertson–Walker spacetimes; namely, a Lorentzian manifold is a generalized Robertson–Walker spacetime if and only if it admits a timelike concircular vector field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.