Abstract

A new technique to study spacelike hypersurfaces of constant mean curvature in a spacetime which admits a timelike gradient conformal vector field is introduced. As an application, the leaves of the natural spacelike foliation of such spacetimes are characterized in some relevant cases. The global structure of this class of spacetimes is analyzed and the relation with its well-known subfamily of generalized Robertson–Walker spacetimes is exposed in detail. Moreover, some known uniqueness results for compact spacelike hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetimes are widely extended. Finally, and as a consequence, several Calabi–Bernstein problems are solved obtaining all the entire solutions on a compact Riemannian manifold to the constant mean curvature spacelike hypersurface equation, under natural geometric assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.