Abstract

After a brief review of previous frequentist and Bayesian approaches to multiple change-points, we describe a Bayesian model for multiple parameter changes in a multiparameter exponential family. This model has attractive sta- tistical and computational properties and yields explicit recursive formulas for the Bayes estimates of the piecewise constant parameters. Efficient estimators of the hyperparameters of the Bayesian model for the parameter jumps can be used in conjunction, yielding empirical Bayes estimates. The empirical Bayes approach is also applied to solve long-standing frequentist problems such as significance testing of the null hypothesis of no change-points versus multiple change-point alterna- tives, and inference on the number and locations of change-points that partition the unknown parameter sequence into segments of equal values. Simulation studies of performance and an illustrative application to the British coal mine data are also given. Extensions from the exponential family to general parametric families and from independent observations to genearlized linear time series models are then provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.