Abstract
In this work, we investigate statistical properties of change point estimators based on moving sum statistics. We extend results for testing in a classical situation with multiple deterministic change points by allowing for random exogenous change points that arise in Hidden Markov or regime switching models among others. To this end, we consider a multiple mean change model with possible time series errors and prove that the number and location of change points are estimated consistently by this procedure. Additionally, we derive rates of convergence for the estimation of the location of the change points and show that these rates are strict by deriving the limit distribution of properly scaled estimators. Because the small sample behavior depends crucially on how the asymptotic (long-run) variance of the error sequence is estimated, we propose to use moving sum type estimators for the (long-run) variance and derive their asymptotic properties. While they do not estimate the variance consistently at every point in time, they can still be used to consistently estimate the number and location of the changes. In fact, this inconsistency can even lead to more precise estimators for the change points. Finally, some simulations illustrate the behavior of the estimators in small samples showing that its performance is very good compared to existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.