Abstract
AbstractThe short‐circuit current (Jsc) of organic solar cells is defined by the interplay of exciton photogeneration in the active layer, geminate and non‐geminate recombination losses and free charge carrier extraction. The method proposed in this work allows the quantification of geminate recombination and the determination of the mobility‐lifetime product (µτ) as a single integrated parameter for charge transport and non‐geminate recombination. Furthermore, the extraction efficiency is quantified based on the obtained µτ product. Only readily available experimental methods (current‐voltage characteristics, external quantum efficiency measurements) are employed, which are coupled with an optical transfer matrix method simulation. The required optical properties of common organic photovoltaic (OPV) materials are provided in this work. The new approach is applied to three OPV systems in inverted or conventional device structures, and the results are juxtaposed against the µτ values obtained by an independent method based on the voltage–capacitance spectroscopy technique. Furthermore, it is demonstrated that the new method can accurately predict the optimal active layer thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.