Abstract
Bulk heterojunction (BHJ) polymer solar cells (PSCs) that can be fabricated by solution processing techniques are under intense investigation in both academic institutions and industrial companies because of their potential to enable mass production of flexible and cost-effective alternative to silicon-based solar cells. A combination of novel polymer development, nanoscale morphology control and processing optimization has led to over 8% power conversion efficiencies (PCEs) for BHJ PSCs with a conventional device structure. Attempts to develop PSCs with an inverted device structure as required for achieving high PECs and good stability have, however, met with limited success. Here, we report that a high PCE of 8.4% under AM 1.5G irradiation was achieved for BHJ PSCs with an inverted device structure. This high efficiency was obtained through interfacial engineering of solution-processed electron extraction layer, leading to facilitate electron transport and suppress bimolecular recombination. These results provided an important progress for solution-processed PSCs, and demonstrated that PSCs with an inverted device structure are comparable with PSCs with the conventional device structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.