Abstract

In conceptual design studies engineers typically utilize data-based surrogate models to enable rapid evaluation of design objectives that otherwise would be too computationally expensive and time-consuming to simulate. Due to the computationally expensive simulations, the data-based surrogate models are often trained using small sample sizes, resulting in low-fidelity models which can produce results that are not trustworthy. To mitigate this issue, a similarity-assisted design space exploration method is proposed. The similarity is measured between design points that have been evaluated through lower-fidelity data-based surrogate models and design points that have been evaluated using higher-fidelity physics-based simulations. This similarity information can then be used by design engineers to better understand the trustworthiness of the data produced by the low-fidelity surrogate models. Our numerical experiments demonstrate that such a similarity measurement can be used as an indicator of the trustworthiness of the lower-fidelity model predictions. Moreover, a second similarity metric is proposed for measuring the similarity of new designs to legacy designs, thus highlighting the potential to reuse knowledge, analysis models, and data. The proposed method is demonstrated by means of an aero-engine structural component conceptual design study. An open-source software tool developed to assist in data visualization is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.