Abstract

Near-infrared (NIR) photons are expanding advanced applications in optoelectronics. However, while 2D materials like graphene offer an attractive route for NIR photodetection, the alternative for high-performance NIR detection is still evolving. Hence, solution-processed n-Bi2Se3 /p-Si-based 2D heterojunction photodiodes have been fabricated here and used for high-performance NIR detection. Further, we report high photoresponsivity of 248 mA W−1 at 1100 nm, high external quantum efficiency of 22, 23 and 28% for Ag-loaded (at 5, 7.5 and 10%) Bi2Se3 and good stability. The chemical states of Bi2Se3 and Ag are detected using the core-level spectra of x-ray photoelectron spectroscopy. Photoresponse I–V characteristics are investigated under both dark and illumination; the high photocurrent achieved for Ag-loaded Bi2Se3 and the increase in the forward photocurrent under both dark and bright conditions are reported. The temporal photoresponse curve confirms the good stability (photoswitching behavior) and reproducibility with a response time of 0.74 s and a decay time of 0.18 s. Therefore, these unique performance and device parameters of a manufactured photodiode strongly recommend as a potential heterojunction photodiode for an NIR photodetector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.