Abstract

The RV coefficient is an important measure of linear dependence between two multivariate data vectors. Using unbiased and computationally efficient estimators of its components, a modification to the RV coefficient is proposed, and used to construct a test of significance for the true coefficient. The modified estimator improves the accuracy of the original and, along with the test, can be applied to data with arbitrarily large dimensions, possibly exceeding the sample size, and the underlying distribution need only have finite fourth moment. Exact and asymptotic properties are studied under fairly general conditions. The accuracy of the modified estimator and the test is shown through simulations under a variety of parameter settings. In comparisons against several existing methods, both the proposed estimator and the test exhibit similar performance to the distance correlation. Several real data applications are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.