Abstract
This paper presents a new design for a shoulder assistive device based on a modified double parallelogram linkage (DPL). The DPL allows for active support of the arm motion in the sagittal plane, while enabling the use of a distally located motor that can be mounted around the user's waist to improve the weight distribution. The development of the DPL provides an unobtrusive mechanism for assisting the movement of the shoulder joint with a wide range of motion. This design contains three degrees-of-freedom (DOFs) and a rigid structure for supporting the arm. The modified DPL uses a cable-driven system to transfer the torque of the motor mounted on the user's back through the links to the arm. The proposed design assists with the flexion/extension of the arm, while allowing the adduction/abduction and internal/external rotations to be unconstrained. A kinematic analysis of the cable system and linkage interaction is presented, and a prototype is fabricated to verify the proposed concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.