Abstract

Short-term load forecasting is an important component of grid economic dispatching and the forecasting error directly affects the economy of grid operation. Different from wide area power grid, it is more difficult to implement short-term user load forecasting, especially existing missing data. The feature model about user load is constructed by analyzing the static, dynamic and distributed characteristics of user load. Then, based on gradient boosted decision trees and similar training samples, a short-term user load filling and forecasting model is proposed. Through predicting different types of user load in short-term, to analyze filling model about missing load data is helpful to improve the accuracy of short-term user load forecasting. And, the forecasting accuracy and its stability of the proposed model are validated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.